Czech Society for Cybernetics and Informatics

Seminar Announcement

Talk by Igor Sedlár: One-sorted Kleene algebra with tests

@ Seminar on Applied Mathematical Logic18.05.2022 16:00

Kleene algebra with tests, KAT, is a simple two-sorted algebraic framework for verifying properties of propositional while programs. One-sorted alternatives to KAT have been explored, mainly in connection with applications in automated program verification. A well known example of this approach is Kleene algebra with domain, KAD. A generalization of KAD called one-sorted Kleene algebra with tests, OneKAT, was recently proposed by the author in collaboration with J. Wannenburg. In this paper we show that KAT can be transformed into a flexible one-sorted framework that retains all natural properties of KAT. This framework, called Kleene algebra with test operators, is based on the idea of extending Kleene algebra with a set of test operators such that the set of images of the multiplicative unit under test operators generates a Boolean algebra of tests.

Talk by Vít Punčochář: Layers of Propositional Types

@ Seminar on Applied Mathematical Logic13.04.2022 16:00

In my talk I will describe a framework that is based on the idea that various logical expressions, e.g. modal adverbs or the conditional ‘if’, generate statements that provide information of different types. This idea is partly inspired by the team semantics for propositional dependence logic but deviates from it in several respects. Most importantly, instead of the two semantic layers used in dependence logic - possible worlds and teams -- a whole hierarchy of contexts is introduced and different types of formulas are evaluated at different levels of this hierarchy. This leads to a rich stratification of informational types. I will explore the formal aspects of this approach and apply it to a number of puzzling phenomena related to modalities and conditionals.

Talk by Martin Suda: Integrating Machine Learning into Saturation-based ATPs

@ Seminar on Applied Mathematical Logic02.03.2022 16:00

Applying the techniques of machine learning (ML) promises to dramatically improve the performance of modern automatic theorem provers (ATPs) and thus to positively impact their applications. The most successful avenue in this direction explored so far is machine-learned clause selection guidance, where we learn to recognize and prefer for selection clauses that look like those that contributed to a proof in past successful runs. In this talk I present Deepire, an extension of the ATP Vampire where clause selection is guided by a recursive neural network (RvNN) for classifying clauses based solely on their derivation history.

Talk by Andrew Tedder: Kapsner Complementation

@ Seminar on Applied Mathematical Logic23.02.2022 16:00

In this paper I discuss a class of algebras appropriate to model, and, philosophically speaking, also to capture the central commitments of, Kapsner Strongly Connective logics. I introduce this class of logics, and its relation to standard connexive systems, introduce the class of algebras, comparing with some work on algebraic semantics of connexive logics by Storrs McCall, and give some examples. I close with some avenues of future work and open problems.

Talk by Nicholas Ferenz: Conditional FDE-logics

@ Seminar on Applied Mathematical Logic02.02.2022 16:00

The logic FDE, especially in its four-valued presentation, and sometimes referred to as the Belnap-Dunn logic due to its origins in the work of both Nuel Belnapand J. Michael Dunn, is typically presented without a conditional connective. Moreover, adding a conditional to FDE is not always straightforward, and sometimes presents interesting problems. An infamous problem shared by many paraconsistent logics is that the standard definitions of the material conditional (via disjunction and negation) result in a conditional for which modus ponens is not valid. While there are several extensions and expansions of FDE with a conditional connective, the present work adds to this list by combining Dunn's two-valued relational approach to FDE with conditionals, where the conditionals are defined (semantically) as in the conditional logics presented by Chellas in his 1975 paper "Basic conditional logic" and in chapter 10 of his 1980 book "Modal Logic". In addition, we present a general frame semantics that, strictly speaking, is only necessary for some of the extensions (quantified or propositional) of the base logics constructed here.

Talk by David Cerna: Learning Higher-Order Logic Programs From Failures

@ Seminar on Applied Mathematical Logic19.01.2022 16:00

Learning complex programs through inductive logic programming (ILP) remains a formidable challenge. Existing higher-order enabled ILP systems show improved accuracy and learning performance, though remain hampered by the limitations of the underlying learning mechanism. Experimental results show that our extension of the versatile Learning From Failures paradigm by higher-order definitions significantly improves learning performance without the burdensome human guidance required by existing systems. Furthermore, we provide a theoretical framework capturing the class of higher-order definitions handled by our extension. (Joint work with Stanisław J. Purgał and Cezary Kaliszyk.)