Global Optimization Techniques in Camera-Robot Calibration: Thesis Defence

Jan Heller
Thesis Advisor: Tomas Pajdla
Center of Machine Perception
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University, Prague, Czech Republic

April 13, 2016

Camera-Robot Calibration

In order to relate the measurements made by a camera mounted on a robotic gripper to the gripper's coordinate frame, a transformation from the gripper to the camera needs to be determined.

Camera-Robot Calibration

In order to relate the measurements made by a camera mounted on a robotic gripper to the gripper's coordinate frame, a transformation from the gripper to the camera needs to be determined.

Hand-Eye Calibration

Camera Calibration

Robot Calibration

Hand-Eye Calibration: Classical Approach

End position

- $\mathrm{R}_{\mathrm{X}}, \mathrm{t}_{\mathrm{X}}$ separately Tsai89, Shiu89, Chou91
- $\mathrm{R}_{\mathrm{K}}, \mathrm{t}_{\mathrm{X}}$ simultaneously Houraud95, Daniilidis96
- R_{X} only - Seo09

$$
\begin{gathered}
\mathrm{X}=\left(\begin{array}{cc}
\mathrm{R}_{\mathrm{X}} & \mathbf{t}_{\mathrm{X}} \\
\mathbf{0}^{\top} & 1
\end{array}\right) \\
\text { Given: } \mathrm{A}_{i}=\left(\begin{array}{cc}
\mathrm{R}_{\mathrm{A}_{i}} & \mathbf{t}_{\mathrm{A}_{i}} \\
\mathbf{0}^{\top} & 1
\end{array}\right), \mathrm{B}_{i}=\left(\begin{array}{cc}
\mathrm{R}_{\mathrm{B}_{i}} \mathbf{t}_{\mathrm{B}_{i}} \\
\mathbf{0}^{\top} & 1
\end{array}\right) \\
\mathrm{A}_{i} \mathrm{X}=\mathrm{XB}_{i} \\
i=1, \ldots, n \\
\mathrm{R}_{\mathrm{A}_{i}} \mathrm{R}_{\mathrm{X}}=\mathrm{R}_{\mathrm{X}} \mathrm{R}_{\mathrm{B}_{i}} \\
\mathrm{R}_{\mathrm{A}_{i}} \mathrm{t}_{\mathrm{X}}+s \mathbf{t}_{\mathrm{A}_{i}}=\mathrm{R}_{\mathrm{X}} \mathbf{t}_{\mathrm{B}_{i}}+\mathbf{t}_{\mathrm{X}}
\end{gathered}
$$

Hand-Eye \& Robot-World Calibration: Classical Approach

- Introduced in Zhuang94
- Quaternions solution Dornaika98
- Dual quat. - Liu10

$$
\begin{gathered}
\mathrm{X}=\left(\begin{array}{cc}
\mathrm{R}_{\mathrm{X}} & \mathbf{t}_{\mathrm{X}} \\
\mathbf{0}^{\top} & 1
\end{array}\right), \mathrm{Z}=\left(\begin{array}{cc}
\mathrm{R}_{\mathrm{Z}} & \mathrm{t}_{\mathrm{Z}} \\
\mathbf{0}^{\top} & 1
\end{array}\right) \\
\text { Given: } \mathrm{A}_{i}^{\prime}=\left(\begin{array}{cc}
\mathrm{R}_{\mathrm{A}_{i}^{\prime}} & \mathbf{t}_{\mathrm{A}_{i}^{\prime}} \\
\mathbf{0}^{\top} & 1
\end{array}\right), \mathrm{B}_{i}^{\prime}=\left(\begin{array}{cc}
\mathrm{R}_{\mathrm{B}_{i}^{\prime}} & \mathbf{t}_{\mathrm{B}_{i}^{\prime}} \\
\mathbf{0}^{\top} & 1
\end{array}\right) \\
\mathrm{A}_{i}^{\prime} \mathrm{X}=\mathrm{ZB}_{i}^{\prime} \\
i=1, \ldots, n \\
\mathrm{R}_{\mathrm{A}_{i}^{\prime}} \mathrm{R}_{\mathrm{X}}=\mathrm{R}_{\mathrm{Z}} \mathrm{R}_{\mathrm{B}_{i}^{\prime}} \\
\mathrm{R}_{\mathrm{A}_{i}^{\prime}} \mathrm{t}_{\mathrm{X}}+s \mathbf{t}_{\mathrm{A}_{i}^{\prime}}=\mathrm{R}_{\mathrm{Z}} \mathrm{t}_{\mathrm{B}_{i}^{\prime}}+\mathrm{t}_{\mathrm{Z}}
\end{gathered}
$$

Thesis Goals

- Apply global optimization techniques to the problems of robot-world calibration
- Use image measurements directly (instead of using them as a pre-step for computing absolute or relative camera poses A_{i})
- Use geometrically meaningful error measures and to provide novel insights into these problems
- Show that globally optimal solutions, albeit based on different error measures, can still be recovered even in situations where the image measurements are not available

Thesis Goals

- Apply global optimization techniques to the problems of robot-world calibration
- Use image measurements directly (instead of using them as a pre-step for computing absolute or relative camera poses A_{i})
- Use geometrically meaningful error measures and to provide novel insights into these problems
- Show that globally optimal solutions, albeit based on different error measures, can still be recovered even in situations where the image measurements are not available

Thesis Goals

- Apply global optimization techniques to the problems of robot-world calibration
- Use image measurements directly (instead of using them as a pre-step for computing absolute or relative camera poses A_{i})
- Use geometrically meaningful error measures and to provide novel insights into these problems
- Show that globally optimal solutions, albeit based on different error measures, can still be recovered even in situations where the image measurements are not available

Thesis Goals

- Apply global optimization techniques to the problems of robot-world calibration
- Use image measurements directly (instead of using them as a pre-step for computing absolute or relative camera poses A_{i})
- Use geometrically meaningful error measures and to provide novel insights into these problems
- Show that globally optimal solutions, albeit based on different error measures, can still be recovered even in situations where the image measurements are not available

Hand Eye Calibration Using Structure-from-Motion

CVPR 2011—Globally Optimal t_{x}

- Based on F. Kahl and R. Hartley, PAMI 2008 (SOCP + bisection)
- Feasibility test based on SOCP and reprojection error
- Recovered \mathbf{t}_{X} is optimal in L_{∞}-norm and computed from image correspondences directly
- R_{X} has to be recovered suboptimally using other method (Using SfM)
- No need for a calibration target $\left((s) \mathbf{t}_{\mathrm{A}_{i}}\right.$ never used)

Hand Eye Calibration Using Structure-from-Motion

CVPR 2011—Globally Optimal t_{x}

- Based on F. Kahl and R. Hartley, PAMI 2008 (SOCP + bisection)
- Feasibility test based on SOCP and reprojection error
- Recovered \mathbf{t}_{X} is optimal in L_{∞}-norm and computed from image correspondences directly
- R_{X} has to be recovered suboptimally using other method (Using SfM)
- No need for a calibration target $\left((s) \mathbf{t}_{\mathrm{A}_{i}}\right.$ never used)

Given $\mathrm{R}_{\mathrm{X}}, \mathrm{R}_{\mathrm{B}_{i}}, \mathbf{t}_{\mathrm{B}_{i}}, \gamma, \mathbf{u}_{i j}, \mathbf{v}_{i j}$
do there exist $\mathbf{t}_{\mathbf{X}}, \mathbf{Y}_{i j}$

$$
\begin{aligned}
\text { subject to } & \angle\left(\mathbf{u}_{i j}, \mathbf{Y}_{i j}\right) \leq \gamma \\
& \angle\left(\mathbf{v}_{i j}, \mathrm{R}_{\mathrm{X}} \mathrm{R}_{\mathrm{B}_{i}} \mathrm{R}_{\mathrm{X}}^{\top} \mathbf{Y}_{i j}+\right. \\
& \left.\left(\mathrm{I}-\mathrm{R}_{\mathrm{X}} \mathrm{R}_{\mathrm{B}_{i}} \mathrm{R}_{\mathrm{X}}^{\top}\right) \mathrm{t}_{\mathrm{X}}+\mathrm{R}_{\mathrm{X}} \mathrm{t}_{\mathrm{B}_{i}}\right) \leq \gamma \\
\text { for } & i=1, \ldots, n, j=1, \ldots, m ?
\end{aligned}
$$

Hand Eye Calibration Using Structure-from-Motion

CVPR 2011—Globally Optimal t_{x}

- Based on F. Kahl and R. Hartley, PAMI 2008 (SOCP + bisection)
- Feasibility test based on SOCP and reprojection error
- Recovered t_{X} is optimal in L_{∞}-norm and computed from image correspondences directly
- R_{X} has to be recovered suboptimally using other method (Using SfM)
- No need for a calibration target $\left((s) \mathbf{t}_{\mathrm{A}_{i}}\right.$ never used)

Given $\mathrm{R}_{\mathrm{X}}, \mathrm{R}_{\mathrm{B}_{i}}, \mathbf{t}_{\mathrm{B}_{i}}, \gamma, \mathbf{u}_{i j}, \mathbf{v}_{i j}$
do there exist $\mathbf{t}_{\mathrm{X}}, \mathbf{Y}_{i j}$

$$
\begin{aligned}
\text { subject to } & \angle\left(\mathbf{u}_{i j}, \mathbf{Y}_{i j}\right) \leq \gamma \\
& \angle\left(\mathbf{v}_{i j}, \mathrm{R}_{\mathrm{X}} \mathrm{R}_{\mathrm{B}_{i}} \mathrm{R}_{\mathrm{X}}^{\top} \mathbf{Y}_{i j}+\right. \\
& \left.\left(\mathrm{I}-\mathrm{R}_{\mathrm{X}} \mathrm{R}_{\mathrm{B}_{i}} \mathrm{R}_{\mathrm{X}}^{\top}\right) \mathrm{t}_{\mathrm{X}}+\mathrm{R}_{\mathrm{X}} \mathrm{t}_{\mathrm{B}_{i}}\right) \leq \gamma \\
\text { for } & i=1, \ldots, n, j=1, \ldots, m ?
\end{aligned}
$$

Hand Eye Calibration Using Structure-from-Motion

CVPR 2011—Globally Optimal t_{x}

- Based on F. Kahl and R. Hartley, PAMI 2008 (SOCP + bisection)
- Feasibility test based on SOCP and reprojection error
- Recovered \mathbf{t}_{X} is optimal in L_{∞}-norm and computed from image correspondences directly
- R_{X} has to be recovered suboptimally using other method (Using SfM)
- No need for a calibration target ($(s) \mathbf{t}_{\mathrm{A}_{i}}$ never used)

Algorithm

- Estimate the relative camera rotations $\mathrm{R}_{\mathrm{A}_{i}}$ using SfM
- Estimate R_{X} using $\mathrm{R}_{\mathrm{A}_{i}}$ and $\mathrm{R}_{\mathrm{B}_{i}}$
- Use the proposed alg. to find the optimal t_{X} using R_{X} up to required precision ϵ.

Hand Eye Calibration Using Structure-from-Motion

CVPR 2011—Globally Optimal t_{x}

- Based on F. Kahl and R. Hartley, PAMI 2008 (SOCP + bisection)
- Feasibility test based on SOCP and reprojection error
- Recovered \mathbf{t}_{X} is optimal in L_{∞}-norm and computed from image correspondences directly
- R_{X} has to be recovered suboptimally using other method (Using SfM)
- No need for a calibration target $\left((s) \mathbf{t}_{\mathrm{A}_{i}}\right.$ never used)

Algorithm

- Estimate the relative camera rotations $\mathrm{R}_{\mathrm{A}_{i}}$ using SfM
- Estimate R_{X} using $\mathrm{R}_{\mathrm{A}_{i}}$ and $\mathrm{R}_{\mathrm{B}_{i}}$
- Use the proposed alg. to find the optimal t_{X} using R_{X} up to required precision ϵ.

Hand-Eye Calibration Using Brand-and-Bound

CVPR 2012, TPAMI 2016—Globally Optimal t_{x} and R_{X}

- Based on R. Hartley and F. Khal, IJCV 2009
- Branch-and-Bound Algorithm (in the angle-axis domain)
- Objective function based on epipolar error
- Feasibility test based on Linear Programming
- Recovered X is optimal in L_{∞}-norm
- Still no need for a calibration target

Hand-Eye Calibration Using Brand-and-Bound

CVPR 2012, TPAMI 2016—Globally Optimal t_{x} and R_{X}

- Based on R. Hartley and F. Khal, IJCV 2009
- Branch-and-Bound Algorithm (in the angle-axis domain)
- Objective function based on epipolar error
- Feasibility test based on Linear Programming
- Recovered X is optimal in L_{∞}-norm
- Still no need for a calibration target

Hand-Eye Calibration Using Brand-and-Bound

CVPR 2012, TPAMI 2016—Globally Optimal t_{x} and R_{X}

- Based on R. Hartley and F. Khal, IJCV 2009
- Branch-and-Bound Algorithm (in the angle-axis domain)
- Objective function based on epipolar error
- Feasibility test based on Linear Programming
- Recovered X is optimal in L_{∞}-norm
- Still no need for a calibration target

$\mathbf{V}_{i j}$

$\mathbf{t}_{\mathrm{A}_{i}}\left[\mathbf{v}_{i j}\right]_{\times} \mathrm{R}_{\mathrm{A}_{i}} \mathbf{u}_{i j}=0$
$\mathbf{t}_{\mathrm{A}_{i}}\left[\mathbf{v}_{i j}\right]_{\times} \mathrm{R}_{\mathrm{A}_{i}} \mathbf{u}_{i j} \leq e_{i j}$

Hand-Eye Calibration Using Brand-and-Bound

CVPR 2012, TPAMI 2016-Globally Optimal t_{x} and R_{x}

- Based on R. Hartley and F. Khal, IJCV 2009
- Branch-and-Bound Algorithm (in the angle-axis domain)
- Objective function based on epipolar error
- Feasibility test based on Linear Programming
- Recovered X is optimal in L_{∞}-norm
- Still no need for a calibration target

Hand-Eye Calibration Using Brand-and-Bound

CVPR 2012, TPAMI 2016-Globally Optimal t_{x} and R_{x}

- Based on R. Hartley and F. Khal, IJCV 2009
- Branch-and-Bound Algorithm (in the angle-axis domain)
- Objective function based on epipolar error
- Feasibility test based on Linear Programming
- Recovered X is optimal in L_{∞}-norm
- Still no need for a calibration target

Hand-Eye Calibration Using Brand-and-Bound

CVPR 2012, TPAMI 2016—Globally Optimal t_{x} and R_{X}

- Based on R. Hartley and F. Khal, IJCV 2009
- Branch-and-Bound Algorithm (in the angle-axis domain)
- Objective function based on epipolar error
- Feasibility test based on Linear Programming
- Recovered X is optimal in L_{∞}-norm
- Still no need for a calibration target

Hand-Eye Calibration without Hand Orientation

ACCV 2012

- Variation of hand-eye calibration: HEC w/o known hand rotation
- Arises when the robot is not calibrated or the information from the robot is not available (and the external measurement device provides translation measurements only)
- Problem formulated as a system of 7 equations in 7 unknowns
- Solved using Groebner basis method (via generator by Kukelova)

Hand-Eye Calibration without Hand Orientation

ACCV 2012

- Variation of hand-eye calibration: HEC w/o known hand rotation
- Arises when the robot is not calibrated or the information from the robot is not available (and the external measurement device provides translation measurements only)
- Problem formulated as a system of 7 equations in 7 unknowns
- Solved using Groebner basis method (via generator by Kukelova)

Hand-Eye Calibration without Hand Orientation

ACCV 2012

- Variation of hand-eye calibration: HEC w/o known hand rotation
- Arises when the robot is not calibrated or the information from the robot is not available (and the external measurement device provides translation measurements only)
- Problem formulated as a system of 7 equations in 7 unknowns
- Solved using Groebner basis method (via generator by Kukelova)

$$
\begin{array}{r}
\text { Given } \mathrm{R}_{\mathrm{A}_{i}}, \mathrm{R}_{\mathrm{A}_{j}}, \mathbf{t}_{\mathrm{A}_{i}}, \mathbf{t}_{\mathrm{A}_{j}}, \mathbf{t}_{\mathrm{B}_{i}}, \mathbf{t}_{\mathrm{B}_{j}} \\
\text { find } \mathrm{R}_{\mathrm{X}} \in S O(3), \mathbf{t}_{\mathrm{X}} \in \mathbb{R}^{3} \\
\text { subject to } \mathrm{R}_{\mathrm{A}_{i}} \mathbf{t}_{\mathrm{X}}+\mathbf{t}_{\mathrm{A}_{i}}=\mathrm{R}_{\mathrm{X}}^{q} \mathbf{t}_{\mathrm{B}_{i}}+\mathbf{t}_{\mathrm{X}} \\
\\
\mathrm{R}_{\mathrm{A}_{j}} \mathbf{t}_{\mathrm{X}}+\mathbf{t}_{\mathrm{A}_{j}}=\mathrm{R}_{\mathrm{X}}^{q} \mathbf{t}_{\mathrm{B}_{j}}+\mathbf{t}_{\mathrm{X}} \\
\\
\\
a^{2}+b^{2}+c^{2}+d^{2}=1
\end{array}
$$

Hand-Eye Calibration without Hand Orientation

ACCV 2012

- Variation of hand-eye calibration: HEC w/o known hand rotation
- Arises when the robot is not calibrated or the information from the robot is not available (and the external measurement device provides translation measurements only)
- Problem formulated as a system of 7 equations in 7 unknowns
- Solved using Groebner basis method (via generator by Kukelova)

calling the generator \square

Robot-World Calibration by LMI Relaxations

3DV 2014

- Robot-World Calibration Z (with known robot poses, 2D-3D corresp., and hand-eye calibration X)
- Formulated as a bundle adjustment problem
- Polynomial optimization problem of deg. 4 in 4 unknowns $\left(\mathbf{q}_{z}\right)$ of constant size (+ back-substitution for t_{z})
- Solved globally optimally using LMI relaxation method

Robot-World Calibration by LMI Relaxations

3DV 2014

- Robot-World Calibration Z (with known robot poses, 2D-3D corresp., and hand-eye calibration X)
- Formulated as a bundle adjustment problem
- Polynomial optimization problem of deg. 4 in 4 unknowns $\left(\mathbf{q}_{z}\right)$ of constant size (+ back-substitution for t_{z})
- Solved globally optimally using LMI relaxation method

Robot-World Calibration by LMI Relaxations

3DV 2014

- Robot-World Calibration Z (with known robot poses, 2D-3D corresp., and hand-eye calibration X)
- Formulated as a bundle adjustment problem
- Polynomial optimization problem of deg. 4 in 4 unknowns $\left(\mathbf{q}_{z}\right)$ of constant size (+ back-substitution for t_{z})
- Solved globally optimally using LMI relaxation method

$$
\begin{array}{ll}
\min & F(\mathrm{Z})=\sum_{i=1}^{n} \sum_{j=1}^{m}\left\|\mathrm{C}_{i j} \mathbf{a}_{i}\right\|^{2} \Rightarrow \begin{array}{c}
\min F^{\prime}\left(\mathbf{q}_{\mathrm{z}}\right)=\mathbf{m}^{\top}\left(\mathbf{Q}^{\top} \mathrm{EQ}\right) \mathbf{m} \\
=\mathbf{m}^{\top} \mathrm{E}^{\prime \top} \mathbf{m} \\
\text { s.t. } \mathrm{R}_{\mathrm{Z}} \in S O(3),
\end{array} \Rightarrow \begin{array}{c}
\text { s.t. } q_{1}^{2}+q_{2}^{2}+q_{3}^{2}+q_{4}^{2}=1, \\
\mathbf{t}_{\mathrm{z}} \in \mathbb{R}^{3} \geq 0
\end{array}
\end{array}
$$

Robot-World Calibration by LMI Relaxations

3DV 2014

- Robot-World Calibration Z (with known robot poses, 2D-3D corresp., and hand-eye calibration X)
- Formulated as a bundle adjustment problem
- Polynomial optimization problem of deg. 4 in 4 unknowns $\left(\mathbf{q}_{z}\right)$ of constant size (+ back-substitution for t_{z})
- Solved globally optimally using LMI relaxation method

Linear Matrix Inequalities Relaxation

Polynomial Optimization Problem Semidefinite Programming Problem

```
minimize p(\mathbf{x})\quad\operatorname{minimize \mathcal{L}}\mathbf{y}(p(\mathbf{x}))
subject to gi (\mathbf{x})\geq0,i=1,\ldots,k,\quad=>
    where }\mathbf{x}=(\overline{\mp@subsup{x}{1}{}},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{m}{}\mp@subsup{)}{}{\top}\in\mp@subsup{\mathbb{R}}{}{m},\quad=>\quad\mp@subsup{M}{\delta-\mp@subsup{d}{i}{}}{(G)
    p(\mathbf{x}),\mp@subsup{g}{i}{}(\mathbf{x})\in\mathbb{R}[\mathbf{x}].\quad\mathrm{ where }\mathbf{y}=(\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\ldots,\mp@subsup{y}{d}{}\mp@subsup{)}{}{\top}\in\mp@subsup{\mathbb{R}}{}{d},
```


Hand-Eye and Robot-World Calibration by LMI Relaxations

ICRA 2014

- Revisited classical hand-eye and robot-world calibration formulation (known $\mathrm{B}_{i}^{\prime}, \mathrm{A}_{i}^{\prime}$, corresp. not available)
- Proposed $3 \mathrm{H}-\mathrm{E}$ and $3 \mathrm{H}-\mathrm{E}$ \& R-W formulations based on rotation matrices, quaternions and dual quaternions
- All formulations lead to polynomial optimization problems (POP)
- All problems solved globally optimally using LMI relaxation approach

Hand-Eye and Robot-World Calibration by LMI Relaxations

ICRA 2014

- Revisited classical hand-eye and robot-world calibration formulation (known $\mathrm{B}_{i}^{\prime}, \mathrm{A}_{i}^{\prime}$, corresp. not available)
- Proposed $3 \mathrm{H}-\mathrm{E}$ and $3 \mathrm{H}-\mathrm{E}$ \& R-W formulations based on rotation matrices, quaternions and dual quaternions
- All formulations lead to polynomial optimization problems (POP)
- All problems solved globally optimally using LMI relaxation approach

$$
\begin{aligned}
& \min f_{4}\left(\mathbf{u}_{\mathbf{x}}, \mathbf{v}_{\mathbf{x}}, \mathbf{t}_{\mathbf{x}}, \mathbf{u}_{\mathbf{z}}, \mathbf{v}_{\mathbf{z}}, \mathbf{t}_{\mathrm{z}}\right)= \\
& \min f_{1}\left(\mathbf{u}_{\mathbf{x}}, \mathbf{v}_{\mathbf{X}}, \mathbf{t}_{\mathbf{x}}\right)= \\
& =\sum_{i=1}^{n}\left\|\mathrm{~A}_{i} \mathrm{X}\left(\mathbf{u}_{\mathrm{X}}, \mathbf{v}_{\mathrm{X}}, \mathbf{t}_{\mathrm{X}}\right)-\mathrm{X}\left(\mathbf{u}_{\mathrm{X}}, \mathbf{v}_{\mathrm{X}}, \mathbf{t}_{\mathrm{X}}\right) \mathrm{B}_{i}\right\|^{2} \\
& \text { s.t. } \mathbf{u}_{\mathrm{x}}^{\top} \mathbf{u}_{\mathrm{x}}=1, \mathbf{v}_{\mathrm{x}}^{\top} \mathbf{v}_{\mathrm{x}}=1, \mathbf{u}_{\mathrm{x}}^{\top} \mathbf{v}_{\mathrm{X}}=0 \text {. } \\
& \min f_{2}\left(\mathbf{q}_{\mathbf{x}}, \mathbf{t}_{\mathbf{x}}\right)= \\
& =\sum_{i=1}^{n}\left\|\mathrm{~A}_{i} \mathrm{X}\left(\mathbf{q}_{\mathrm{X}}, \mathbf{t}_{\mathbf{x}}\right)-\mathrm{X}\left(\mathbf{q}_{\mathrm{X}}, \mathbf{t}_{\mathbf{x}}\right) \mathrm{B}_{i}\right\|^{2} \\
& \text { s.t. } \quad \mathbf{q}_{\mathbf{x}}^{\top} \mathbf{q}_{\mathbf{x}}=1, q_{\mathbf{x} 1} \geq 0 \text {. } \\
& \min \quad f_{3}\left(\hat{\mathbf{q}}_{\mathrm{X}}\right)=\sum_{i=1}^{n}\left\|\hat{\mathbf{a}}_{i} \otimes \hat{\mathbf{q}}_{\mathbf{X}}-\hat{\mathbf{q}}_{\mathbf{X}} \otimes \hat{\mathbf{b}}_{i}\right\|^{2} \\
& \text { s.t. } \mathbf{q}_{\mathrm{x}}^{\top} \mathbf{q}_{\mathrm{x}}=1 \text {, } \\
& q_{\mathrm{x} 1} q_{\mathrm{x} 5}+q_{\mathrm{x} 2} q_{\mathrm{x} 6}+q_{\mathrm{x} 3} q_{\mathrm{x} 7}+q_{\mathrm{x} 4} q_{\mathrm{x} 8}=0, \\
& q_{\mathrm{x} 1} \geq 0 \text {. }
\end{aligned}
$$

Hand-Eye and Robot-World Calibration by LMI Relaxations

ICRA 2014

- Revisited classical hand-eye and robot-world calibration formulation (known $\mathrm{B}_{i}^{\prime}, \mathrm{A}_{i}^{\prime}$, corresp. not available)
- Proposed $3 \mathrm{H}-\mathrm{E}$ and $3 \mathrm{H}-\mathrm{E}$ \& R-W formulations based on rotation matrices, quaternions and dual quaternions
- All formulations lead to polynomial optimization problems (POP)
- All problems solved globally optimally using LMI relaxation approach

Method Variables Degree \# Monomials \# Lin. Vars $\mathrm{Time}^{1}(\mathrm{~s}) \quad \mathrm{Time}^{2}(\mathrm{~s})$

uvhec	9	4	124	715	1.45	0.45
qhec	7	4	85	330	0.48	0.29
dqhec	8	4	177	495	0.99	0.46
uvherwc	18	4	280	7315	953.76	60.89
qherwc	14	4	209	3060	68.38	7.91
dqherwc	16	2	112	4845	309.25	16.85

Hand-Eye and Robot-World Calibration by LMI Relaxations

ICRA 2014

- Revisited classical hand-eye and robot-world calibration formulation (known $\mathrm{B}_{i}^{\prime}, \mathrm{A}_{i}^{\prime}$, corresp. not available)
- Proposed $3 \mathrm{H}-\mathrm{E}$ and $3 \mathrm{H}-\mathrm{E}$ \& R-W formulations based on rotation matrices, quaternions and dual quaternions
- All formulations lead to polynomial optimization problems (POP)
- All problems solved globally optimally using LMI relaxation approach

Linear Matrix Inequalities Relaxation

Polynomial Optimization Problem Semidefinite Programming Problem

```
minimize p(\mathbf{x})
subject to gi (\mathbf{x})\geq0,i=1,\ldots,k,\quad=>
    where }\mathbf{x}=(\overline{\mp@subsup{x}{1}{}},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{m}{}\mp@subsup{)}{}{\top}\in\mp@subsup{\mathbb{R}}{}{m},\quad=>\quad\mp@subsup{M}{\delta-\mp@subsup{d}{i}{}}{(}
    p(\mathbf{x}),\mp@subsup{g}{i}{}(\mathbf{x})\in\mathbb{R}[\mathbf{x}].
    where }\mathbf{y}=(\mp@subsup{y}{1}{},\mp@subsup{y}{2}{},\ldots,\mp@subsup{y}{d}{}\mp@subsup{)}{}{\top}\in\mp@subsup{\mathbb{R}}{}{d}\mathrm{ ,
```


GpoSolver: A Matlab/C++ Toolbox for Global Polynomial Optim.

Optimization Methods and Software, 2016

PMI class	PMI class definition	Code generation
	```syms x1 x2 a1 a2 real; problem.vars = [x1, x2]; problem.ppars = [a1, a2]; problem.obj \(=-x 1^{\wedge} 2\) - x2^2; problem.cons \(=\)... \{[1-a1*x1*x2, x1; ... \(\mathrm{x} 1, \mathrm{a} 2-\mathrm{x} 1 \wedge 2-\mathrm{x} 2 \wedge 2]>=0\}\);```	par.relax_order = 2;
$\begin{array}{\|cc} \min -x_{1}^{2}-x_{2}^{2} & \\ \text { s.t. }\left(\begin{array}{cc} 1-a_{1} x_{1} x_{2} & x_{1} \\ x_{1} & a_{2}-x_{1}^{2}-x_{2}^{2} \end{array}\right) \succeq 0 \\ \hline \end{array}$		par.classname = 'PmiProblem'; par.filename = 'pmi_problem'; gpogenerator(problem, par);
Problem modeling		pmi_problem.h $\underbrace{\text { pmi_problem.cpp }}_{\text {MATLAB }}$


http://cmp.felk.cvut.cz/gposolver

## Publications Related to the Thesis

Impacted journal papers

## TPAMI: IF 5.781

- Jan Heller, Michal Havlena and Tomas Pajdla. Globally Optimal Hand-Eye Calibration Using Branch-and-Bound. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Volume 38, Issue 5, 2016


## OMS: IF 1.624

- Jan Heller, Tomas Pajdla. GpoSolver: a Matlab/C++ toolbox for global polynomial optimization. Optimization Methods and Software (OMS), Volume 31, Issue 2, 2016


## Publications Related to the Thesis

## Conference papers

- Jan Heller, Tomas Pajdla. World-base calibration by global polynomial optimization. In 2nd International Conference on 3D Vision (3DV), pages 593-600. December, 2014.
- Jan Heller, Didier Henrion, and Tomas Pajdla. Hand-eye and robot-world calibration by global polynomial optimization. In IEEE International Conference on Robotics and Automation (ICRA), pages 3157-3164. IEEE, May, 2014.
- Zuzana Kukelova, Jan Heller, and Tomas Pajdla. Hand-eye calibration without hand orientation measurement using minimal solution. In Asian Conference on Computer Vision (ACCV), pages 576-589. Springer, November, 2012.
- Jan Heller, Michal Havlena, and Tomas Pajdla. A branch-and-bound algorithm for globally optimal hand-eye calibration. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1608-1615. IEEE, June, 2012.
- Jan Heller, Michal Havlena, Akihiro Sugimoto, and Tomas Pajdla. Structure-from-motion based hand-eye calibration using $L_{\infty}$ minimization. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3497-3503. IEEE, June, 2011.


## Software Related to the Thesis

## bbhec

- bbhec: A Branch-and-Bound Algorithm for Globally Optimal Hand-Eye Calibration


## minhec

- minhec: Hand-Eye Calibration without Hand Orientation Measurement Using Minimal Solution


## mpherwc

- mpherwc: Hand-Eye and Robot-World Calibration by Global Polynomial Optimization


## GpoSolver

- GpoSolver: A Matlab/C++ Toolbox for Global Polynomial Optimization


## Jan Heller

Google Scholar
PhD student, czech Technical University in Prague
Computer Vision
Verified email at cmp.felk.cvut.cz - Homepage

Title 1-20	Cited by	Year
Structure-from-motion based hand-eye calibration using L $\infty$ minimization   J Heller, M Havena, A sugimoto, T Paddla   Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on ...	23	2011
A branch-and-bound algorithm for globally optimal hand-eye calibration   J Heller, M Havlena, T Paidla   Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on	12	2012
Stereographic rectification of omnidirectional stereo pairs   J Heller, T Pajda   Computer Vision and Pattern Recognition, 2009. CVFR 2009. IEEE Conference on	12	2009
Hand-Eye and Robot-World Calibration by Global Polynomial Optimization   J Heller, D Henrion, T Pajdla.   IEEE International Conference on Robotics and Automation	7	2014
CMP SfM Web Service v1. 0   J Heller, M Havlena, A Torii, T Pajdla	5	2010
Singly-bordered block-diagonal form for minimal problem solvers   Z Kukelova, M Bujnak, J Heller, TPajdla Computer Vision--ACCV 2014, 488-502	4	2014
Hand-Eye calibration without hand orientation measurement using minimal solution   ZKukelova, J Heller, TPajdla   Computer Vision-ACCV 2012, 576-589	4	2012
3d surface models from opportunity mer navcam   M Havlena, M Jančošek, J Heller, TPajdla EPSC Abstracts 5	4	2010
Globally optimal hand-eye calibration using branch-and-bound J Heller, M Havlena, T Padda IEEE	3	2015


Citation indices	All	Since 2011
Citations	87	79
h-index	5	5
i10-index	3	3
20092010201120122013201420152016		

## Co-authors View all..

Tomas Fajdla
Michal Havlena
Zuzana Kukelova
Martin Bujnak
Akihiro Sugimoto
Luc Van Gool
Andrew Fitzgibbon


Thank you for your attention

